论文标题

脑启发的全球本地学习与神经形态计算合并

Brain-inspired global-local learning incorporated with neuromorphic computing

论文作者

Wu, Yujie, Zhao, Rong, Zhu, Jun, Chen, Feng, Xu, Mingkun, Li, Guoqi, Song, Sen, Deng, Lei, Wang, Guanrui, Zheng, Hao, Pei, Jing, Zhang, Youhui, Zhao, Mingguo, Shi, Luping

论文摘要

目前存在两种主要的学习方法途径,包括错误驱动的全球学习和面向神经科学的本地学习。将它们集成到一个网络中可能会为多功能学习方案提供互补的学习能力。同时,神经形态计算具有巨大的希望,但仍然需要大量有用的算法和算法 - 硬件的共同设计来利用优势。在这里,我们通过引入脑启发的元学习范式和一个结合神经元动力学和突触可塑性的可区分尖峰模型来报告神经形态杂交学习模型。它可以META-LEARN本地可塑性,并获得自上而下的监督信息,以进行多尺度协同学习。我们在多个不同的任务中证明了该模型的优势,包括在神经形态视觉传感器中进行的几次学习,持续学习和容忍性学习。它的性能比单学习方法要高得多,并且在赋予神经形态应用革命的能力方面表现出了希望。我们通过利用算法 - 硬件共同设计,进一步在天吉神经形态平台中实施了混合模型,并证明该模型可以充分利用神经形态的多核体系结构来开发混合计算范式。

Two main routes of learning methods exist at present including error-driven global learning and neuroscience-oriented local learning. Integrating them into one network may provide complementary learning capabilities for versatile learning scenarios. At the same time, neuromorphic computing holds great promise, but still needs plenty of useful algorithms and algorithm-hardware co-designs for exploiting the advantages. Here, we report a neuromorphic hybrid learning model by introducing a brain-inspired meta-learning paradigm and a differentiable spiking model incorporating neuronal dynamics and synaptic plasticity. It can meta-learn local plasticity and receive top-down supervision information for multiscale synergic learning. We demonstrate the advantages of this model in multiple different tasks, including few-shot learning, continual learning, and fault-tolerance learning in neuromorphic vision sensors. It achieves significantly higher performance than single-learning methods, and shows promise in empowering neuromorphic applications revolution. We further implemented the hybrid model in the Tianjic neuromorphic platform by exploiting algorithm-hardware co-designs and proved that the model can fully utilize neuromorphic many-core architecture to develop hybrid computation paradigm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源