论文标题

两个预测是否具有相同的条件期望准确性?

Can Two Forecasts Have the Same Conditional Expected Accuracy?

论文作者

Zhu, Yinchu, Timmermann, Allan

论文摘要

测试Giacomini和White(2006)提出的成对预测模型的均等预测精度的方法假设,使用固定宽度的滚动窗口估算了基础预测模型的参数,并在零假设中包含参数估计的效果。我们表明,两个预测模型的有条件预期的损失差异是Martingale差异序列的必要条件是,结果是两个预测​​的简单平均值。当预测包含参数估计错误时,这意味着结果的条件均值必须是过去估计错误的函数 - 在许多情况下,这种情况失败了。我们还表明,即使没有参数估计的许多类型的随机过程,零也可能失败。

The approach for testing equal predictive accuracy for pairs of forecasting models proposed by Giacomini and White (2006) assumes that the parameters of the underlying forecasting models are estimated using a rolling window of fixed width and incorporates the effect of parameter estimation in the null hypothesis. We show that a necessary and sufficient condition for the conditionally expected loss differential of two forecasting models to be a martingale difference sequence is that the outcome is a simple average of the two forecasts. When the forecasts contain parameter estimation errors, this means that the conditional mean of the outcome has to be a function of past estimation errors--a condition that fails in many situations. We also show that the null can fail even in the absence of parameter estimation for many types of stochastic processes in common use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源