论文标题

完全控制的最佳有限时间擦除

Optimal finite-time bit erasure under full control

论文作者

Proesmans, Karel, Ehrich, Jannik, Bechhoefer, John

论文摘要

我们研究了由一维双孔电势组成的一位记忆的有限时间擦除,每个记忆都井编码了记忆宏观的。我们专注于设置,这些设置可以完全控制潜在的能量景观形式,并得出协议,以最大程度地减少在固定时间内删除钻头所需的平均工作。我们允许仅删除仅在位中编码的某些信息的情况。对于最终处于局部均衡状态所需的系统,我们根据与系统初始电位相对应的平衡玻尔兹曼分布来计算明确擦除所需的最小工作量。最低工作与协议持续时间成反比。通过放松局部平衡最终状态的要求,可以进一步降低擦除成本,并允许任何最终分布兼容与每个记忆雄厚的概率的约束。我们还在擦除成本上得出了上限和下限。

We study the finite-time erasure of a one-bit memory consisting of a one-dimensional double-well potential, with each well encoding a memory macrostate. We focus on setups that provide full control over the form of the potential-energy landscape and derive protocols that minimize the average work needed to erase the bit over a fixed amount of time. We allow for cases where only some of the information encoded in the bit is erased. For systems required to end up in a local equilibrium state, we calculate the minimum amount of work needed to erase a bit explicitly, in terms of the equilibrium Boltzmann distribution corresponding to the system's initial potential. The minimum work is inversely proportional to the duration of the protocol. The erasure cost may be further reduced by relaxing the requirement for a local-equilibrium final state and allowing for any final distribution compatible with constraints on the probability to be in each memory macrostate. We also derive upper and lower bounds on the erasure cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源