论文标题

TCDESC:学习拓扑一致的描述符

TCDesc: Learning Topology Consistent Descriptors

论文作者

Pan, Honghu, Meng, Fanyang, He, Zhenyu, Liang, Yongsheng, Liu, Wei

论文摘要

三胞胎损失广泛用于从图像贴片中学习本地描述符。但是,三重态损耗仅最大程度地减少了匹配描述符之间的欧几里得距离,并最大化了非匹配描述符之间的欧几里得距离,这忽略了两个描述符集之间的拓扑相似性。在本文中,我们提出了拓扑测量,除了欧几里得距离以外,通过考虑阳性样品的KNN描述符来学习拓扑统一的描述符。首先,我们为每个描述符建立一个新颖的拓扑矢量,然后为局部线性嵌入(LLE)建立一个指示描述符及其KNN描述符之间的拓扑关系。然后,我们将描述符之间的拓扑距离定义为其拓扑矢量的差异。最后,我们采用动态加权策略来融合欧几里得的距离和匹配描述符的拓扑距离,并将融合结果作为三胞胎损失的正样品距离。几个基准测试的实验结果表明,我们的方法的性能优于最先进的结果,并有效地提高了三胞胎损失的性能。

Triplet loss is widely used for learning local descriptors from image patch. However, triplet loss only minimizes the Euclidean distance between matching descriptors and maximizes that between the non-matching descriptors, which neglects the topology similarity between two descriptor sets. In this paper, we propose topology measure besides Euclidean distance to learn topology consistent descriptors by considering kNN descriptors of positive sample. First we establish a novel topology vector for each descriptor followed by Locally Linear Embedding (LLE) to indicate the topological relation among the descriptor and its kNN descriptors. Then we define topology distance between descriptors as the difference of their topology vectors. Last we employ the dynamic weighting strategy to fuse Euclidean distance and topology distance of matching descriptors and take the fusion result as the positive sample distance in the triplet loss. Experimental results on several benchmarks show that our method performs better than state-of-the-arts results and effectively improves the performance of triplet loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源