论文标题
对网格单元的定向作用的预测和概括
Prediction and Generalisation over Directed Actions by Grid Cells
论文作者
论文摘要
知道定向行动的影响如何推广到新情况(例如向北,南,向西或向左,右转等移动)是在新情况下快速概括的关键。马尔可夫任务可以以状态空间和过渡矩阵的特征来表征,并且最近的工作提出,神经网格代码提供了状态空间的有效表示,因为转变矩阵的特征向量反映了各州之间的扩散,从而可以有效地预测未来状态分布。在这里,我们扩展了特征性预测模型,利用工具从傅立叶分析到对任意翻译的定向过渡结构(即位移和扩散)的预测,表明单个特征向量可以通过动作特定的特定特定特定的特定特定的特定eigenvalues来支持一组特征向量。我们展示了如何定义一种“方向感”以结合行动以达到目标状态(忽略特定于任务的转换偏差偏差),并证明将傅立叶表示形式添加到深度Q网络中,帮助连续控制任务中的策略学习。我们显示了使用振荡干扰(通过傅立叶组件作为速度控制的振荡器)或连续的吸引子网络(通过更新动力学的分析),我们显示了由自我运动驱动以执行路径积分驱动的网格电池发射模型之间的等效性。因此,我们为网格系统在预测计划,方向和路径集成感中的作用提供了一个统一的框架:支持跨不同任务的定向行动的普遍推断。
Knowing how the effects of directed actions generalise to new situations (e.g. moving North, South, East and West, or turning left, right, etc.) is key to rapid generalisation across new situations. Markovian tasks can be characterised by a state space and a transition matrix and recent work has proposed that neural grid codes provide an efficient representation of the state space, as eigenvectors of a transition matrix reflecting diffusion across states, that allows efficient prediction of future state distributions. Here we extend the eigenbasis prediction model, utilising tools from Fourier analysis, to prediction over arbitrary translation-invariant directed transition structures (i.e. displacement and diffusion), showing that a single set of eigenvectors can support predictions over arbitrary directed actions via action-specific eigenvalues. We show how to define a "sense of direction" to combine actions to reach a target state (ignoring task-specific deviations from translation-invariance), and demonstrate that adding the Fourier representations to a deep Q network aids policy learning in continuous control tasks. We show the equivalence between the generalised prediction framework and traditional models of grid cell firing driven by self-motion to perform path integration, either using oscillatory interference (via Fourier components as velocity-controlled oscillators) or continuous attractor networks (via analysis of the update dynamics). We thus provide a unifying framework for the role of the grid system in predictive planning, sense of direction and path integration: supporting generalisable inference over directed actions across different tasks.