论文标题

$η= 0.91 $ tc湍流的角动量传输的双重最大值

Double maxima of angular momentum transport in $η=0.91$ TC turbulence

论文作者

Ezeta, Rodrigo, Sacco, Francesco, Bakhuis, Dennis, Huisman, Sander G., Ostilla-Mónico, Rodolfo, Verzicco, Roberto, Sun, Chao, Lohse, Detlef

论文摘要

我们使用实验和直接的数值模拟来探测最终状态附近低外观泰勒(TC)流的相位空间。气缸半径比固定为$η= r_i/r_o = 0.91 $。在$ 10^7 \ leq \ text {ta} \ leq10^{11} $的范围内,在$ 10^7 \ leq \ text {ta} $中的非剪切剪切驱动器(TAYLOR数字$ \ text {ta} $)均已探索。在$ \ text {ta} $范围$ 10^8 \ leq \ text {ta} \ leq10^{10} $中,我们观察到角动量传输的两个局部最大值作为圆柱旋转比率的函数,可以将其描述为“ Co-”,并且由于其位置而被视为“ Co-”,并且由于其位置和范围而变形,并且是范围的。我们确认宽峰伴随着大规模结构的加强,并且一旦驾驶(TA)足够强大,狭窄的峰就会出现。正如Brauckmann \ emph {et al。}〜(2016)在数值模拟中首先证明的那样,宽峰是由离心不稳定性产生的,狭窄的峰是剪切不稳定性的结果。我们描述了峰值如何用$ \ text {ta} $变化,因为流动变得更加动荡。当边界层(BLS)变得湍流时,接近向最终状态的过渡,反向旋转的泰勒涡流对的通常结构分解了,稳定的未配对卷会在本地出现。我们将这种状态归因于过渡到最终制度期间的基础掷骰特性的变化。 $ \ text {ta} \ lot10^{10} $的流量结构的进一步变化导致宽峰完全消失,狭窄的峰移动。当BLS内部平滑区域的区域消失并且整个边界层变得活跃时,就会引起第二个过渡。

We use experiments and direct numerical simulations to probe the phase-space of low-curvature Taylor--Couette (TC) flow in the vicinity of the ultimate regime. The cylinder radius ratio is fixed at $η=r_i/r_o=0.91$. Non-dimensional shear drivings (Taylor numbers $\text{Ta}$) in the range $10^7\leq\text{Ta}\leq10^{11}$ are explored for both co- and counter-rotating configurations. In the $\text{Ta}$ range $10^8\leq\text{Ta}\leq10^{10}$, we observe two local maxima of the angular momentum transport as a function of the cylinder rotation ratio, which can be described as either as "co-" and "counter-rotating" due to their location or as "broad" and "narrow" due to their shape. We confirm that the broad peak is accompanied by the strengthening of the large-scale structures, and that the narrow peak appears once the driving (Ta) is strong enough. As first evidenced in numerical simulations by Brauckmann \emph{et al.}~(2016), the broad peak is produced by centrifugal instabilities and that the narrow peak is a consequence of shear instabilities. We describe how the peaks change with $\text{Ta}$ as the flow becomes more turbulent. Close to the transition to the ultimate regime when the boundary layers (BLs) become turbulent, the usual structure of counter-rotating Taylor vortex pairs breaks down and stable unpaired rolls appear locally. We attribute this state to changes in the underlying roll characteristics during the transition to the ultimate regime. Further changes in the flow structure around $\text{Ta}\approx10^{10}$ cause the broad peak to disappear completely and the narrow peak to move. This second transition is caused when the regions inside the BLs which are locally smooth regions disappear and the whole boundary layer becomes active.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源