论文标题

混合光滑Sobolev空间中的高维非参数密度估计

High-Dimensional Non-Parametric Density Estimation in Mixed Smooth Sobolev Spaces

论文作者

Ding, Liang, Zou, Lu, Wang, Wenjia, Shahrampour, Shahin, Tuo, Rui

论文摘要

密度估计在机器学习,统计推断和可视化中的许多任务中起着关键作用。高维密度估计中的主要瓶颈是高度的计算成本和缓慢的收敛速度。在本文中,我们提出了新的估计量,用于称为自适应双曲线跨密度估计量的高维非参数密度估计,该估计量在混合的平滑Sobolev空间中具有不错的收敛性。作为通常的Sobolev空间的修改,混合的平滑Sobolev空间更适合描述某些应用中的高维密度函数。我们证明,与其他现有方法不同,所提出的估计器在整体概率度量标准下不会遭受维数的诅咒,包括Hölder的积分概率度量,在总变异指标和Wasserstein距离为特殊情况下。讨论了提出的估计器在生成对抗网络(GAN)中的应用以及对高维数据的FIT测试的应用,以说明拟议的估计器在高维问题中的良好性能。进行数值实验并说明我们提出的方法的效率。

Density estimation plays a key role in many tasks in machine learning, statistical inference, and visualization. The main bottleneck in high-dimensional density estimation is the prohibitive computational cost and the slow convergence rate. In this paper, we propose novel estimators for high-dimensional non-parametric density estimation called the adaptive hyperbolic cross density estimators, which enjoys nice convergence properties in the mixed smooth Sobolev spaces. As modifications of the usual Sobolev spaces, the mixed smooth Sobolev spaces are more suitable for describing high-dimensional density functions in some applications. We prove that, unlike other existing approaches, the proposed estimator does not suffer the curse of dimensionality under Integral Probability Metric, including Hölder Integral Probability Metric, where Total Variation Metric and Wasserstein Distance are special cases. Applications of the proposed estimators to generative adversarial networks (GANs) and goodness of fit test for high-dimensional data are discussed to illustrate the proposed estimator's good performance in high-dimensional problems. Numerical experiments are conducted and illustrate the efficiency of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源