论文标题
过去的生产限制了当前的能源需求:全球能源消耗的持续扩展及其对缓解气候变化的影响
Past production constrains current energy demands: persistent scaling in global energy consumption and implications for climate change mitigation
论文作者
论文摘要
气候变化已与全球经济交织在一起。在这里,我们描述了惯性对能源消耗持续增长的重要性。从热力学论证中得出,并在1980年至2017年之间使用了38年的可用统计数据,我们发现了世界通货膨胀调整的经济生产$ y $ $ y $的历史时间积分$ w $之间的持续无关的缩放,或$ w \ w \ left(t \ right) $λ= \ Mathcal {e}/w = 5.9 \ pm0.1 $ gigawatt每万亿美元2010年美元。这种经验结果意味着,人口的扩张是一种症状,而不是$ \数学E $和二氧化碳排放$ c $的当前指数级增长,并且以预测的速率是与数据相吻合的预测费率的主要驱动力的经济生产效率$ y/\ Mathcal {e} $的创新。然后,稳定$ c $的选项仅限于$ \ Mathcal E $的快速脱碳,每天可再生能力或核电能力超过一吉瓦。另外,假设持续依靠化石燃料,文明可以转移到稳态的经济,该经济专门用于维护而不是扩张。如果立即建立了这一点,仍然需要持续的能耗,因此,直到浓度超过500 ppmv之前,大气中的二氧化碳浓度将无法平衡自然水槽,如果到2030年达到了稳态,则需要双重工业水平。
Climate change has become intertwined with the global economy. Here, we describe the importance of inertia to continued growth in energy consumption. Drawing from thermodynamic arguments, and using 38 years of available statistics between 1980 to 2017, we find a persistent time-independent scaling between the historical time integral $W$ of world inflation-adjusted economic production $Y$, or $W\left(t\right) = \int_0^t Y\left(t'\right)dt'$, and current rates of world primary energy consumption $\mathcal E$, such that $λ= \mathcal{E}/W = 5.9\pm0.1$ Gigawatts per trillion 2010 US dollars. This empirical result implies that population expansion is a symptom rather than a cause of the current exponential rise in $\mathcal E$ and carbon dioxide emissions $C$, and that it is past innovation of economic production efficiency $Y/\mathcal{E}$ that has been the primary driver of growth, at predicted rates that agree well with data. Options for stabilizing $C$ are then limited to rapid decarbonization of $\mathcal E$ through sustained implementation of over one Gigawatt of renewable or nuclear power capacity per day. Alternatively, assuming continued reliance on fossil fuels, civilization could shift to a steady-state economy that devotes economic production exclusively to maintenance rather than expansion. If this were instituted immediately, continual energy consumption would still be required, so atmospheric carbon dioxide concentrations would not balance natural sinks until concentrations exceeded 500 ppmv, and double pre-industrial levels if the steady-state was attained by 2030.