论文标题

零充气的伽马模型,用于反vloved钙成像轨迹

A zero-inflated gamma model for deconvolved calcium imaging traces

论文作者

Wei, Xue-Xin, Zhou, Ding, Grosmark, Andres, Ajabi, Zaki, Sparks, Fraser, Zhou, Pengcheng, Brandon, Mark, Losonczy, Attila, Paninski, Liam

论文摘要

钙成像是测量大神经种群活性的关键工具。为了开发用于钙视频数据的“预处理”工具的大力努力,解决了例如运动校正,变形,压缩,脱卷和反卷积的重要问题。然而,对val钙信号的统计模型(即,通过预处理管道提取的估计活性)对于解释钙测量值以及将这些观测值纳入下游概率编码和解码模型同样至关重要。令人惊讶的是,迄今为止,这些问题的关注程度要少得多。在这项工作中,我们检查了反应活性估计的统计特性,并比较了这些随机信号的概率模型。特别是,我们提出了一个零充气的伽马(ZIG)模型,该模型将钙反应的特征在于伽马分布的混合物和一个点质量的质量,该量质量可模拟零响应。我们将结果模型应用于神经编码和解码问题。我们发现,在模拟和真实神经数据的背景下,ZIG模型优于更简单的模型(例如Poisson或Bernoulli模型),因此可以在桥接钙成像分析方法中发挥有用的作用。

Calcium imaging is a critical tool for measuring the activity of large neural populations. Much effort has been devoted to developing "pre-processing" tools for calcium video data, addressing the important issues of e.g., motion correction, denoising, compression, demixing, and deconvolution. However, statistical modeling of deconvolved calcium signals (i.e., the estimated activity extracted by a pre-processing pipeline) is just as critical for interpreting calcium measurements, and for incorporating these observations into downstream probabilistic encoding and decoding models. Surprisingly, these issues have to date received significantly less attention. In this work we examine the statistical properties of the deconvolved activity estimates, and compare probabilistic models for these random signals. In particular, we propose a zero-inflated gamma (ZIG) model, which characterizes the calcium responses as a mixture of a gamma distribution and a point mass that serves to model zero responses. We apply the resulting models to neural encoding and decoding problems. We find that the ZIG model outperforms simpler models (e.g., Poisson or Bernoulli models) in the context of both simulated and real neural data, and can therefore play a useful role in bridging calcium imaging analysis methods with tools for analyzing activity in large neural populations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源