论文标题
AC电流冷却分子电子连接
Cooling molecular electronic junctions by AC current
论文作者
论文摘要
以分子电子结中流动的电子电流将大量能量耗散到振动的自由度,紧张和破裂的化学键,并经常迅速破坏分子装置的完整性。分子电子连接的臭名昭著的机械不稳定性严重限制了性能,寿命,并提出了有关单分子电子技术的技术生存能力的问题。在这里,我们提出了一种实用方案,用于通过在大型静态操作DC电压偏置上应用AC电压来冷却分子振动温度。使用非平衡的绿色功能,我们计算了由核所经历的粘度和扩散系数,这些核被非平衡的“海上”定期驱动的,电流携带的电子。通过平衡粘度和扩散系数来推断有效的分子连接温度。我们的计算表明,在保持相同的平均电流的同时,可以实现超过40 \%冷却的机会。
Electronic current flowing in a molecular electronic junction dissipates significant amounts of energy to vibrational degrees of freedom, straining and rupturing chemical bonds and often quickly destroying the integrity of the molecular device. The infamous mechanical instability of molecular electronic junctions critically limits performance, lifespan, and raises questions as to the technological viability of single-molecule electronics. Here we propose a practical scheme for cooling the molecular vibrational temperature via application of an AC voltage over a large, static operational DC voltage bias. Using nonequilibrium Green's functions, we computed the viscosity and diffusion coefficient experienced by nuclei surrounded by a nonequilibrium "sea" of periodically driven, current-carrying electrons. The effective molecular junction temperature is deduced by balancing the viscosity and diffusion coefficients. Our calculations show the opportunity of achieving in excess of 40\% cooling of the molecular junction temperature while maintaining the same average current.