论文标题

使用深度学习提取人蛋白的细胞位置

Extracting Cellular Location of Human Proteins Using Deep Learning

论文作者

Chen, Hanke

论文摘要

在生物医学领域中,了解和提取显微镜图像的模式已成为主要挑战。尽管受过训练的科学家可以在人类细胞中定位感兴趣的蛋白质,但该过程效率不足以处理大量数据,并且通常会导致偏见。为了解决这个问题,我们尝试使用机器学习来创建自动图像分类器,以比人类更高的速度和准确性定位人类蛋白质。我们实施了一个带有残基和挤压兴奋层分类器的卷积神经网络,以定位亚细胞结构中任何类型的蛋白质。在使用一系列技术训练模型之后,它可以将数千种蛋白质定位在27种不同的人类细胞类型中,以比历史方法重要。该模型每分钟可以将4,500张图像分类,精度为63.07%,超过人类的精度(35%)和速度。因为我们的系统可以在不同的细胞类型上实现,所以它在生物医学领域开辟了新的理解愿景。从人类蛋白质的位置信息中,医生可以轻松地检测细胞的异常行为,包括病毒感染,病原体侵袭和恶性肿瘤发育。鉴于通过实验概括的数据量大于人类可以分析的数据,因此减少了分析数据所需的人力资源和时间。此外,该位置信息可用于不同方案,例如亚细胞工程,医疗和病因检查。

Understanding and extracting the patterns of microscopy images has been a major challenge in the biomedical field. Although trained scientists can locate the proteins of interest within a human cell, this procedure is not efficient and accurate enough to process a large amount of data and it often leads to bias. To resolve this problem, we attempted to create an automatic image classifier using Machine Learning to locate human proteins with higher speed and accuracy than human beings. We implemented a Convolution Neural Network with Residue and Squeeze-Excitation layers classifier to locate given proteins of any type in a subcellular structure. After training the model using a series of techniques, it can locate thousands of proteins in 27 different human cell types into 28 subcellular locations, way significant than historical approaches. The model can classify 4,500 images per minute with an accuracy of 63.07%, surpassing human performance in accuracy (by 35%) and speed. Because our system can be implemented on different cell types, it opens a new vision of understanding in the biomedical field. From the locational information of the human proteins, doctors can easily detect cell's abnormal behaviors including viral infection, pathogen invasion, and malignant tumor development. Given the amount of data generalized by experiments are greater than that human can analyze, the model cut down the human resources and time needed to analyze data. Moreover, this locational information can be used in different scenarios like subcellular engineering, medical care, and etiology inspection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源