论文标题
Unital Banach代数的对称性的表征
Characterization of Symmetric Amenability of Unital Banach Algebras
论文作者
论文摘要
In this paper, we introduce $p$-amenability, bounded $s$-symmetric approximate and $s$-symmetric virtual diagonals for a Banach algebra $\mathfrak{A}$ where $s$ is a non-zero element of algebraic center of $\mathfrak{A}$ that is denoted by $Z(\mathfrak{A})$.我们表明,如果Banach代数$ \ Mathfrak {a} $是$ p $ - 可靠,那么它具有$ s $ s $ smmetric近似值和$ s $ s $ symmetric虚拟对角线,并且我们证明,如果Banach代数$ \ Mathfrak {a} $不可用,则是$ -p $ -po $ -Memensiond,并且是unitecor的umenterability和symere andmencialsions andmencemence。
In this paper, we introduce $p$-amenability, bounded $s$-symmetric approximate and $s$-symmetric virtual diagonals for a Banach algebra $\mathfrak{A}$ where $s$ is a non-zero element of algebraic center of $\mathfrak{A}$ that is denoted by $Z(\mathfrak{A})$. We show that if a Banach algebra $\mathfrak{A}$ is $p$-amenable then it has bounded $s$-symmetric approximate and $s$-symmetric virtual diagonals and by this fact we prove that if the Banach algebra $\mathfrak{A}$ is unital then $p$-amenability and symmetric amenability are equivalent.