论文标题
双曲线riemann表面的稳定退化序列的投射嵌入
Projective embedding of stably degenerating sequence of hyperbolic Riemann surfaces
论文作者
论文摘要
给定一系列属$ g \ geq 2 $曲线融合到刺穿的黎曼表面,完全指标为恒定的高斯曲率$ -1 $。 我们证明,毛利 - 典型捆绑包的伯格曼空间的正顺式基础嵌入的kodaira也将嵌入到极限空间的嵌入以及额外的复杂的投影线上收敛。
Given a sequence of genus $g\geq 2$ curves converging to a punctured Riemann surface with complete metric of constant Gaussian curvature $-1$. we prove that the Kodaira embedding using orthonormal basis of the Bergman space of sections of a pluri-canonical bundle also converges to the embedding of the limit space together with extra complex projective lines.