论文标题

有效的建筑搜索持续学习

Efficient Architecture Search for Continual Learning

论文作者

Gao, Qiang, Luo, Zhipeng, Klabjan, Diego

论文摘要

通过神经网络进行持续学习是AI中一个重要的学习框架,旨在很好地学习一系列任务。但是,它通常面临三个挑战:(1)克服灾难性遗忘问题,(2)将当前网络调整到新任务中,同时(3)控制其模型的复杂性。为了实现这些目标,我们提出了一种新颖的方法,即通过有效的建筑搜索,或简而言之。 Cleas与神经体系结构搜索(NAS)紧密合作,该搜索利用强化学习技术来寻找适合新任务的最佳神经体系结构。特别是,我们设计了一个神经元级的NAS控制器,该控制器决定应重复使用以前任务的旧神经元(知识转移),并应添加哪些新神经元(以学习新知识)。这样的细粒控制器使人们可以找到一个非常简洁的体系结构,可以很好地适合每个新任务。同时,由于我们不会改变重复使用的神经元的权重,因此我们完美地记住了从以前的任务中学到的知识。我们在众多顺序分类任务上评估了CLEA,结果表明,Cleas的表现优于其他最先进的替代方法,在使用更简单的神经体系结构的同时,达到了更高的分类精度。

Continual learning with neural networks is an important learning framework in AI that aims to learn a sequence of tasks well. However, it is often confronted with three challenges: (1) overcome the catastrophic forgetting problem, (2) adapt the current network to new tasks, and meanwhile (3) control its model complexity. To reach these goals, we propose a novel approach named as Continual Learning with Efficient Architecture Search, or CLEAS in short. CLEAS works closely with neural architecture search (NAS) which leverages reinforcement learning techniques to search for the best neural architecture that fits a new task. In particular, we design a neuron-level NAS controller that decides which old neurons from previous tasks should be reused (knowledge transfer), and which new neurons should be added (to learn new knowledge). Such a fine-grained controller allows one to find a very concise architecture that can fit each new task well. Meanwhile, since we do not alter the weights of the reused neurons, we perfectly memorize the knowledge learned from previous tasks. We evaluate CLEAS on numerous sequential classification tasks, and the results demonstrate that CLEAS outperforms other state-of-the-art alternative methods, achieving higher classification accuracy while using simpler neural architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源