论文标题
在$ \ mathrm {pg}(6,q^2)$中的Hermitian品种上
On Hermitian varieties in $\mathrm{PG}(6,q^2)$
论文作者
论文摘要
在本文中,我们描述了$ \ mathrm {pg}(6,q^2)$,$ q \ neq2 $ $ \ mathrm {\ qu^2)$ {\ mathcal h}(6,q^2)的特征在$ q^4+q^2+1 $点以$ s $符合的固体$ s $中。
In this paper we characterize the non-singular Hermitian variety ${\mathcal H}(6,q^2)$ of $\mathrm{PG}(6, q^2)$, $q\neq2$ among the irreducible hypersurfaces of degree $q+1$ in $\mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points.