论文标题

精致的推理

Sophisticated Inference

论文作者

Friston, Karl, Da Costa, Lancelot, Hafner, Danijar, Hesp, Casper, Parr, Thomas

论文摘要

Active推论提供了有意义行为的第一个主要描述,例如从中可以得出特殊和重要的情况,例如,加强学习,主动学习,最佳推断,贝叶斯最佳设计等。主动推理可以通过与奖励或价值相同的脚步上的相同的脚步来解决与先前的偏好相关的利用 - 探索困境。简而言之,主动推断以(贝叶斯)信念的功能以预期的(变化)自由能的形式代替了价值函数。在本文中,我们使用一种预期的自由能的递归形式考虑了一种复杂的活性推断。精致描述了代理商对信念的信念的程度。我们考虑了对行动对这些潜在状态的事务和信念的反事实后果的信念的代理人。换句话说,我们从简单地考虑对“如果我这样做会发生什么”的信念转变为“我会相信如果我这样做会发生什么”。自由能的递归形式有效地实现了对未来动作和结果的深入搜索。至关重要的是,这种搜索是信仰状态的序列,而不是国家本身。我们使用深层决策问题的数值模拟说明了该方案的能力。

Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolves the exploitation-exploration dilemma in relation to prior preferences, by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about 'what would happen if I did that' to 'what would I believe about what would happen if I did that'. The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states, as opposed to states per se. We illustrate the competence of this scheme, using numerical simulations of deep decision problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源