论文标题
棒棒:从连续数据中预测双曲系统的不连续性
RoeNets: Predicting Discontinuity of Hyperbolic Systems from Continuous Data
论文作者
论文摘要
我们介绍了ROE神经网络(ROENETS),可以根据短期不连续甚至连续训练数据来预测双曲线保护法(HCLS)的不连续性。我们的方法的灵感来自ROE近似Riemann求解器(P. L. Roe,J。Comput。Phys。,第43卷,1981年,第357---372页),这是最基本的HCLS数值求解器之一。为了准确解决HCLS,ROE认为有必要构建一个符合“属性U”的ROE矩阵,包括可与实际特征值的对角线,与确切的Jacobian一致,并保留了保守的数量。但是,这种矩阵的构建无法通过任何一般数值方法来实现。我们的模型通过在神经网络的角度应用ROE求解器来解决HCL的突破性改进。为了增强我们的模型的表现力,我们将伪插曲纳入新颖的环境中,以实现隐藏的维度,以便我们可以灵活地了解参数的数量。通常,使用传统的机器学习方法,我们的模型从连续培训数据的短窗口预测长期不连续性的能力被认为是不可能的。我们证明,我们的模型可以在没有消散的情况下生成对流演变的高度准确预测,而双曲线系统的不连续性则来自平滑的训练数据。
We introduce Roe Neural Networks (RoeNets) that can predict the discontinuity of the hyperbolic conservation laws (HCLs) based on short-term discontinuous and even continuous training data. Our methodology is inspired by Roe approximate Riemann solver (P. L. Roe, J. Comput. Phys., vol. 43, 1981, pp. 357--372), which is one of the most fundamental HCLs numerical solvers. In order to accurately solve the HCLs, Roe argues the need to construct a Roe matrix that fulfills "Property U", including diagonalizable with real eigenvalues, consistent with the exact Jacobian, and preserving conserved quantities. However, the construction of such matrix cannot be achieved by any general numerical method. Our model made a breakthrough improvement in solving the HCLs by applying Roe solver under a neural network perspective. To enhance the expressiveness of our model, we incorporate pseudoinverses into a novel context to enable a hidden dimension so that we are flexible with the number of parameters. The ability of our model to predict long-term discontinuity from a short window of continuous training data is in general considered impossible using traditional machine learning approaches. We demonstrate that our model can generate highly accurate predictions of evolution of convection without dissipation and the discontinuity of hyperbolic systems from smooth training data.