论文标题

易于平面金属抗铁磁铁Fe $ _2 $的磁晶型

Magnetocrystalline anisotropy of the easy-plane metallic antiferromagnet Fe$_2$As

论文作者

Yang, Kexin, Kang, Kisung, Diao, Zhu, Karigerasi, Manohar H., Shoemaker, Daniel P., Schleife, André, Cahill, David G.

论文摘要

磁晶的各向异性是磁性材料的基本特性,它决定了磁性动力学的动力学,自旋波的频率,磁性域的热稳定性以及纺纱设备的效率。我们结合了扭矩磁力指定和密度功能理论计算,以确定金属抗抗铁磁铁Fe $ _2 $ as的磁晶各向异性。 Fe $ _2 $ AS具有四方晶体结构,而Néel矢量位于(001)平面。我们报告说,(001) - fe $ _2 $的四倍的磁晶方差非常小,$ {k_ {22}} = - 150〜 {\ rm {j/}}} {\ rm {\ rm {\ rm {m}铁磁结构的各向异性广泛用于旋转装置。 $ {k_ {22}} $在t> 150 k处的温度很大,接近零。 KJ/}} {\ rm {M}^{\ rm {3}}}} $使用First-principles密度函数理论。我们的模拟表明,经典的磁偶极 - 偶极相互作用对各向异性的贡献与自旋轨耦合的贡献相当。 (001)平面$ {k_ {22}} $范围从$ -292〜 {\ rm {\ rm {j/}} {\ rm {m}^{\ rm {\ rm {3}} $ 280〜 { j/}} {\ rm {m}^{\ rm {3}}} $,与测量值相同的数量级。我们使用理论上的$ {k_1} $来预测最低频率抗铁磁共振模式的频率和极化,并发现该模式在(001)平面($ f = $ 670 GHz)中线性极化。

Magnetocrystalline anisotropy is a fundamental property of magnetic materials that determines the dynamics of magnetic precession, the frequency of spin waves, the thermal stability of magnetic domains, and the efficiency of spintronic devices. We combine torque magnetometry and density functional theory calculations to determine the magnetocrystalline anisotropy of the metallic antiferromagnet Fe$_2$As. Fe$_2$As has a tetragonal crystal structure with the Néel vector lying in the (001) plane. We report that the four-fold magnetocrystalline anisotropy in the (001)-plane of Fe$_2$As is extremely small, ${K_{22}} = - 150~{\rm{ J/}}{\rm{m}^{\rm{3}}}$ at T = 4 K, much smaller than perpendicular magnetic anisotropy of ferromagnetic structure widely used in spintronics device. ${K_{22}}$ is strongly temperature dependent and close to zero at T > 150 K. The anisotropy ${K_1}$ in the (010) plane is too large to be measured by torque magnetometry and we determine ${K_1} = -830~{\rm{ kJ/}}{\rm{m}^{\rm{3}}}$ using first-principles density functional theory. Our simulations show that the contribution to the anisotropy from classical magnetic dipole-dipole interactions is comparable to the contribution from spin-orbit coupling. The calculated four-fold anisotropy in the (001) plane ${K_{22}}$ ranges from $- 292~{\rm{ J/}}{\rm{m}^{\rm{3}}}$ to $280~{\rm{ J/}}{\rm{m}^{\rm{3}}}$, the same order of magnitude as the measured value. We use ${K_1}$ from theory to predict the frequency and polarization of the lowest frequency antiferromagnetic resonance mode and find that the mode is linearly polarized in the (001)-plane with $f = $ 670 GHz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源