论文标题

一维潜在空间模型的接近完美恢复

Near-Perfect Recovery in the One-Dimensional Latent Space Model

论文作者

Chen, Yu, Kannan, Sampath, Khanna, Sanjeev

论文摘要

假设图$ g $是通过沿线段统一采样顶点的随机创建的,并以概率是其距离的已知减小函数的概率。我们询问仅通过观察生成的未标记图,是否可以通过$ g $重建顶点的实际位置。我们研究了两个自然边缘概率函数的问题 - 一个边缘的概率与距离呈指数衰减,另一个概率仅线性衰减。我们启动研究的目标较弱的目标是仅恢复顶点出现在线段上的顺序。对于一段$ n $和精确参数$δ$的部分,我们表明,对于指数和线性衰减的概率函数,有一个有效的算法可以正确恢复(直至反射对称性),所有顶点的顺序至少仅使用$δ$,仅使用$ \ tilde $ \ tilde $ frac}(n frac}) (顶点)。然后,在此结果的基础上,我们表明$ o(\ frac {n^2 \ log n} {δ^2})$ vertices(samples)足以在$δ$的精确度范围内恢复每个顶点的位置。我们以$ω(\ frac {n^{1.5}}δ)$下键进行补充,对重建位置所需的样本(即使是通过计算无限算法)所需的样本的下限,这表明恢复位置的任务在理论上是很难比恢复订单更难。我们给出实验结果,表明我们的算法以高精度恢复了几乎所有点的位置。

Suppose a graph $G$ is stochastically created by uniformly sampling vertices along a line segment and connecting each pair of vertices with a probability that is a known decreasing function of their distance. We ask if it is possible to reconstruct the actual positions of the vertices in $G$ by only observing the generated unlabeled graph. We study this question for two natural edge probability functions -- one where the probability of an edge decays exponentially with the distance and another where this probability decays only linearly. We initiate our study with the weaker goal of recovering only the order in which vertices appear on the line segment. For a segment of length $n$ and a precision parameter $δ$, we show that for both exponential and linear decay edge probability functions, there is an efficient algorithm that correctly recovers (up to reflection symmetry) the order of all vertices that are at least $δ$ apart, using only $\tilde{O}(\frac{n}{δ^ 2})$ samples (vertices). Building on this result, we then show that $O(\frac{n^2 \log n}{δ^2})$ vertices (samples) are sufficient to additionally recover the location of each vertex on the line to within a precision of $δ$. We complement this result with an $Ω(\frac{n^{1.5}}δ)$ lower bound on samples needed for reconstructing positions (even by a computationally unbounded algorithm), showing that the task of recovering positions is information-theoretically harder than recovering the order. We give experimental results showing that our algorithm recovers the positions of almost all points with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源