论文标题

培训深度尖峰神经网络

Training Deep Spiking Neural Networks

论文作者

Ledinauskas, Eimantas, Ruseckas, Julius, Juršėnas, Alfonsas, Buračas, Giedrius

论文摘要

与当前的模拟神经网络(ANN)相比,使用具有脑启发的尖峰神经网络(SNN)的计算可能更高的能量效率。不幸的是,培训SNN具有与最先进的ANN相同的层数,仍然是一个挑战。据我们所知,在这方面,唯一成功的方法是对ANN​​的监督培训,然后将其转换为SNN。在这项工作中,我们直接使用替代梯度的反向传播来直接训练深SNN,并发现由于饲料前进的反复经常性,SNN的爆炸或消失的梯度问题严重阻碍了他们的训练。我们表明,可以通过调整替代梯度函数来解决此问题。我们还建议对SNN神经元输入电流的ANN文献进行批归归式化。使用这些改进,我们表明可以使用CIFAR100和Imagenette对象识别数据集的Resnet50架构训练SNN。与类似的ANN相比,受过训练的SNN的准确性落后于准确性,但与通过ANN转换获得的SNN相比,需要少几个数量级的推理时间步长(低至10)才能达到良好的精度,而ANN要求按1000个时间步长订单。

Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number of layers as state of the art ANNs remains a challenge. To our knowledge the only method which is successful in this regard is supervised training of ANN and then converting it to SNN. In this work we directly train deep SNNs using backpropagation with surrogate gradient and find that due to implicitly recurrent nature of feed forward SNN's the exploding or vanishing gradient problem severely hinders their training. We show that this problem can be solved by tuning the surrogate gradient function. We also propose using batch normalization from ANN literature on input currents of SNN neurons. Using these improvements we show that is is possible to train SNN with ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets. The trained SNN falls behind in accuracy compared to analogous ANN but requires several orders of magnitude less inference time steps (as low as 10) to reach good accuracy compared to SNNs obtained by conversion from ANN which require on the order of 1000 time steps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源