论文标题

法律瞬间进行对称的随机步行无限度量

Transience in law for symmetric random walks in infinite measure

论文作者

Bénard, Timothée

论文摘要

我们考虑在第二个可计数的局部紧凑拓扑空间上随机步行,并具有不变的ra量。我们表明,如果步行是对称的,并且如果步行不变的每个子集的量度为零或无限度,则几乎每个起点都可以逃脱质量。然后,我们将此结果应用于无限体积的均匀随机行走的背景下,并推断出与Eskin-Margulis复发定理的交谈。

We consider a random walk on a second countable locally compact topological space endowed with an invariant Radon measure. We show that if the walk is symmetric and if every subset which is invariant by the walk has zero or infinite measure, then one has escape of mass for almost every starting point. We then apply this result in the context of homogeneous random walks on infinite volume spaces, and deduce a converse to Eskin-Margulis recurrence theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源