论文标题

二进制矩阵的决定因素达到的每个积分值最高$ω(2^n/n)$

Determinants of binary matrices achieve every integral value up to $Ω(2^n/n)$

论文作者

Shah, Rikhav

论文摘要

这项工作表明,最小的自然数$ d_n $不是某些$ n \ times n $ binary矩阵的决定因素,至少是$ c \,2^n/n $ for $ c = 1/201 $。同样的数量自然下降界限不同的整数$ d_n $的数量,这些数量可以写为某些$ n \ times n $二进制矩阵的决定因素。此渐近地改善了$ d_n =ω(1.618^n)$的先前结果,并稍微改善了特定$ g(n)=ω(n^2)$函数的$ d_n \ ge 2^n/g(n)$的先前结果。

This work shows that the smallest natural number $d_n$ that is not the determinant of some $n\times n$ binary matrix is at least $c\,2^n/n$ for $c=1/201$. That same quantity naturally lower bounds the number of distinct integers $D_n$ which can be written as the determinant of some $n\times n$ binary matrix. This asymptotically improves the previous result of $d_n=Ω(1.618^n)$ and slightly improves the previous result of $D_n\ge 2^n/g(n)$ for a particular $g(n)=ω(n^2)$ function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源