论文标题
晶格$ {\ mathbb c} p^{n-1} $模型,带有$ {\ mathbb z} _ {n} $扭曲的边界条件:bions,bions,绝热连续性和伪内部
Lattice ${\mathbb C} P^{N-1}$ model with ${\mathbb Z}_{N}$ twisted boundary condition: bions, adiabatic continuity and pseudo-entropy
论文作者
论文摘要
我们调查了$ s_ {s {s}^{1} $(agn)$ \ times $ \ times $ $ $s_τ^{1} $(small)$ s_ {s}^{1} $(small)$ s_ {s}^{1} $ { ($ l_ {s} \ ggl_τ$)被带到大约$ {\ mathbb r} \ times s^1 $。我们发现,Polyakov Loop的期望值是$ {\ Mathbb z} _n $对称的订单参数,与零($ | \ langle p \ rangle | \ sim 0 $)保持一致,从小型到相对较大的倒数coupling $β$(从大到小$β$(从大到小$ l_ $ l_ $ l_ $)。随着$β$的增加,Polyakov循环在复杂平面上的分布,该循环集中在小$β$的原点周围,各向同性散布并形成常规的$ n $ n $ side-side-side-side-side-polygon形状(例如五角大楼$ n = 5 $),导致$ | \ langle p \ langle p \ rangle | \ sim 0 $。通过研究Polyakov环对$ S_ {s}^{1} $方向的依赖性,我们还验证了分数Instantons和Bions的存在,这会导致经典的$ n $ vacua之间的隧道过渡,并稳定$ {\ Mathbb z} _ {n} $ symmetry。即使在相当高的$β$中,我们也会发现,即使损坏了polyakov-loop分布的常规 - 多层形状,也倾向于恢复,并且随着样本数量的增加,$ | \ langle p \ rangle | $会变小。为了从另一种角度讨论真空结构的绝热连续性,我们计算``pseudo-entropy''密度$ \ propto \ langle t_ {xx} -t_ {xx} -t_ {°{°
We investigate the lattice ${\mathbb C} P^{N-1}$ sigma model on $S_{s}^{1}$(large) $\times$ $S_τ^{1}$(small) with the ${\mathbb Z}_{N}$ symmetric twisted boundary condition, where a sufficiently large ratio of the circumferences ($L_{s}\gg L_τ$) is taken to approximate ${\mathbb R} \times S^1$. We find that the expectation value of the Polyakov loop, which is an order parameter of the ${\mathbb Z}_N$ symmetry, remains consistent with zero ($|\langle P\rangle|\sim 0$) from small to relatively large inverse coupling $β$ (from large to small $L_τ$). As $β$ increases, the distribution of the Polyakov loop on the complex plane, which concentrates around the origin for small $β$, isotropically spreads and forms a regular $N$-sided-polygon shape (e.g. pentagon for $N=5$), leading to $|\langle P\rangle| \sim 0$. By investigating the dependence of the Polyakov loop on $S_{s}^{1}$ direction, we also verify the existence of fractional instantons and bions, which cause tunneling transition between the classical $N$ vacua and stabilize the ${\mathbb Z}_{N}$ symmetry. Even for quite high $β$, we find that a regular-polygon shape of the Polyakov-loop distribution, even if it is broken, tends to be restored and $|\langle P\rangle|$ gets smaller as the number of samples increases. To discuss the adiabatic continuity of the vacuum structure from another viewpoint, we calculate the $β$ dependence of ``pseudo-entropy" density $\propto\langle T_{xx}-T_{ττ}\rangle$. The result is consistent with the absence of a phase transition between large and small $β$ regions.