论文标题

在对抗性强大的分类中可证明的权衡

Provable tradeoffs in adversarially robust classification

论文作者

Dobriban, Edgar, Hassani, Hamed, Hong, David, Robey, Alexander

论文摘要

众所周知,机器学习方法可能容易受到其输入的对抗性扰动的影响。尽管该地区取得了重大进展,但基本的开放问题仍然存在。在本文中,我们解决了几个关键问题。我们为$ \ ell_2 $和$ \ ell_ \ ell_ \ infty $ verseries提供了精确而近似的贝叶斯 - 最佳鲁棒分类器,以进行两类和三级高斯分类问题。与经典的贝叶斯 - 最佳分类器相反,确定此处的最佳决策不能取得刻痕,并且需要新的理论方法。我们开发和利用新工具,包括最近从概率理论上进行鲁棒等等法的突破,据我们所知,该工具尚未在该地区使用。我们的结果表明,当数据不平衡时,标准准确性和稳健精度之间的基本权衡。我们还显示了进一步的结果,包括对某些模型中凸损失的分类校准分析,以及有限的样本速率,以实现稳健的风险。

It is well known that machine learning methods can be vulnerable to adversarially-chosen perturbations of their inputs. Despite significant progress in the area, foundational open problems remain. In this paper, we address several key questions. We derive exact and approximate Bayes-optimal robust classifiers for the important setting of two- and three-class Gaussian classification problems with arbitrary imbalance, for $\ell_2$ and $\ell_\infty$ adversaries. In contrast to classical Bayes-optimal classifiers, determining the optimal decisions here cannot be made pointwise and new theoretical approaches are needed. We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry, which, to our knowledge, have not yet been used in the area. Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced. We also show further results, including an analysis of classification calibration for convex losses in certain models, and finite sample rates for the robust risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源