论文标题

通过深层生成模型增强基于EEG的情绪识别的数据增强

Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep Generative Models

论文作者

Luo, Yun, Zhu, Li-Zhen, Wan, Zi-Yu, Lu, Bao-Liang

论文摘要

脑电图识别(EEG)中情绪识别中的数据稀缺问题导致难以使用机器学习算法或深层神经网络建立具有高精度的情感模型。受到新兴生成模型的启发,我们提出了三种方法来增强脑电图训练数据,以增强情绪识别模型的性能。我们提出的方法基于两个深层生成模型,分别自动编码器(VAE)和生成对抗网络(GAN)以及两个数据增强策略。对于完整的用法策略,所有生成的数据都将扩展到培训数据集中,而无需判断生成的数据的质量,而对于部分使用,仅选择高质量数据并将其附加到培训数据集中。这三种方法称为有条件的Wasserstein Gan(Cwgan),选择性VAE(SVAE)和选择性Wgan(Swgan)。为了评估这些方法的有效性,我们对两个公共脑电图数据集进行了系统的实验研究,即情绪识别,即种子和DEAP。我们首先以两种形式生成逼真的脑电图训练数据:功率频谱密度和差分熵。然后,我们使用不同数量的类似现实的脑电图数据来增强原始培训数据集。最后,我们使用快捷层培训支持向量机和深层神经网络,以使用原始和增强的培训数据集构建情感模型。实验结果表明,通过我们的方法生产的增强训练数据集增强了基于脑电图的情绪识别模型的性能,并优于现有数据增强方法,例如条件VAE,高斯噪声和旋转数据增强。

The data scarcity problem in emotion recognition from electroencephalography (EEG) leads to difficulty in building an affective model with high accuracy using machine learning algorithms or deep neural networks. Inspired by emerging deep generative models, we propose three methods for augmenting EEG training data to enhance the performance of emotion recognition models. Our proposed methods are based on two deep generative models, variational autoencoder (VAE) and generative adversarial network (GAN), and two data augmentation strategies. For the full usage strategy, all of the generated data are augmented to the training dataset without judging the quality of the generated data, while for partial usage, only high-quality data are selected and appended to the training dataset. These three methods are called conditional Wasserstein GAN (cWGAN), selective VAE (sVAE), and selective WGAN (sWGAN). To evaluate the effectiveness of these methods, we perform a systematic experimental study on two public EEG datasets for emotion recognition, namely, SEED and DEAP. We first generate realistic-like EEG training data in two forms: power spectral density and differential entropy. Then, we augment the original training datasets with a different number of generated realistic-like EEG data. Finally, we train support vector machines and deep neural networks with shortcut layers to build affective models using the original and augmented training datasets. The experimental results demonstrate that the augmented training datasets produced by our methods enhance the performance of EEG-based emotion recognition models and outperform the existing data augmentation methods such as conditional VAE, Gaussian noise, and rotational data augmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源