论文标题
在AS-OCT序列中的开放式纳罗 - 伴侣前室角分类
Open-Narrow-Synechiae Anterior Chamber Angle Classification in AS-OCT Sequences
论文作者
论文摘要
前腔角(ACA)分类是诊断前节光学连贯断层扫描(AS-OCT)诊断角度闭合青光眼的关键步骤。现有的自动分析方法集中在2D AS-OCT切片中的二进制分类系统(即开放角度或角度)。然而,临床诊断需要更具区分的ACA三级系统(即开放,狭窄或合成角度),以使他们寻求更好地了解角度闭合胶良瘤类型的频谱的进展。为了解决这个问题,我们提出了一个基于AS-OCT序列的开放式 - 核对合理ACA分类的新型序列多尺度聚合深网(SMA-NET)。在我们的方法中,使用多尺度判别聚合(MSDA)块来学习切片级别的多尺度表示,而引入了ConvlSTM来研究这些表示的时间动态,以序列级别研究这些表示的时间动态。最后,使用多级损耗函数来结合基于切片的基于切片和基于序列的损失。在两个AS-OCT数据集中评估所提出的方法。实验结果表明,所提出的方法在适用性,有效性和准确性方面优于现有的最新方法。我们认为,这项工作是使用AS-OCT序列将ACA分为开放,狭窄或Synechia类型的首次尝试。
Anterior chamber angle (ACA) classification is a key step in the diagnosis of angle-closure glaucoma in Anterior Segment Optical Coherence Tomography (AS-OCT). Existing automated analysis methods focus on a binary classification system (i.e., open angle or angle-closure) in a 2D AS-OCT slice. However, clinical diagnosis requires a more discriminating ACA three-class system (i.e., open, narrow, or synechiae angles) for the benefit of clinicians who seek better to understand the progression of the spectrum of angle-closure glaucoma types. To address this, we propose a novel sequence multi-scale aggregation deep network (SMA-Net) for open-narrow-synechiae ACA classification based on an AS-OCT sequence. In our method, a Multi-Scale Discriminative Aggregation (MSDA) block is utilized to learn the multi-scale representations at slice level, while a ConvLSTM is introduced to study the temporal dynamics of these representations at sequence level. Finally, a multi-level loss function is used to combine the slice-based and sequence-based losses. The proposed method is evaluated across two AS-OCT datasets. The experimental results show that the proposed method outperforms existing state-of-the-art methods in applicability, effectiveness, and accuracy. We believe this work to be the first attempt to classify ACAs into open, narrow, or synechia types grading using AS-OCT sequences.