论文标题

使用编码器网络的快速建模和理解流体动力学系统

Fast Modeling and Understanding Fluid Dynamics Systems with Encoder-Decoder Networks

论文作者

Thavarajah, Rohan, Zhai, Xiang, Ma, Zheren, Castineira, David

论文摘要

一个深度学习模型是否能够仅通过观察系统的输出来理解某些第一原则定律管辖的系统?深度学习可以学习基础物理学并在做出预测时尊重物理学吗?答案都是积极的。为了模拟多孔介质中的二维地下流体动力学,我们发现可以通过基于计算昂贵的有限数量的模拟器有效地教授基于深度学习的代理模型。我们将问题作为图像到图像回归提出,运行具有不同输入参数的模拟器,以提供合成训练数据集,我们适合深度学习模型。由于数据是时空的,因此我们比较了两种替代时间治疗的性能。卷积的LSTM与自动编码器网络将时间视为直接输入。采用对抗方法来解决流体动态问题中尖锐的空间梯度。与传统的仿真相比,提出的深度学习方法可以更快地进行远期计算,这使我们能够在同一时间使用更大的参数空间探索更多场景。结果表明,提高的远期计算效率在解决反演问题中特别有价值,在解决反演问题中,物理模型的参数未知参数,可以通过历史匹配来确定。通过计算训练有素的模型的像素级关注,我们量化了深度学习模型对关键物理参数的敏感性,因此证明可以通过大加速度解决反转问题。我们从训练速度和准确性方面评估了机器学习代理的功效。可以使用有限的培训数据在几分钟内培训网络,并达到准确性,可以随着提供的培训数据量扩展。

Is a deep learning model capable of understanding systems governed by certain first principle laws by only observing the system's output? Can deep learning learn the underlying physics and honor the physics when making predictions? The answers are both positive. In an effort to simulate two-dimensional subsurface fluid dynamics in porous media, we found that an accurate deep-learning-based proxy model can be taught efficiently by a computationally expensive finite-volume-based simulator. We pose the problem as an image-to-image regression, running the simulator with different input parameters to furnish a synthetic training dataset upon which we fit the deep learning models. Since the data is spatiotemporal, we compare the performance of two alternative treatments of time; a convolutional LSTM versus an autoencoder network that treats time as a direct input. Adversarial methods are adopted to address the sharp spatial gradient in the fluid dynamic problems. Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation, which allows us to explore more scenarios with a much larger parameter space given the same time. It is shown that the improved forward computation efficiency is particularly valuable in solving inversion problems, where the physics model has unknown parameters to be determined by history matching. By computing the pixel-level attention of the trained model, we quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration. We assess the efficacy of the machine learning surrogate in terms of its training speed and accuracy. The network can be trained within minutes using limited training data and achieve accuracy that scales desirably with the amount of training data supplied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源