论文标题

建模标签语义来预测情绪反应

Modeling Label Semantics for Predicting Emotional Reactions

论文作者

Gaonkar, Radhika, Kwon, Heeyoung, Bastan, Mohaddeseh, Balasubramanian, Niranjan, Chambers, Nathanael

论文摘要

预测事件如何诱导故事角色中的情绪通常被视为标准的多标签分类任务,通常将标签视为可以预测的匿名类。他们忽略了情感标签本身可能传达的信息。我们建议,在代表输入故事时,情感标签的语义可以指导模型的注意力。此外,我们观察到事件引起的情绪通常是相关的:唤起欢乐的事件也不太可能引起悲伤。在这项工作中,我们通过标签嵌入来明确对标签类建模,并添加在训练和推理过程中跟踪标签标签标签相关的机制。我们还引入了一种新的半衰期策略,该策略将无标记数据的相关性定期化。我们的经验评估表明,建模标签语义会带来一致的好处,并且我们推进了情感推理任务的最新作品。

Predicting how events induce emotions in the characters of a story is typically seen as a standard multi-label classification task, which usually treats labels as anonymous classes to predict. They ignore information that may be conveyed by the emotion labels themselves. We propose that the semantics of emotion labels can guide a model's attention when representing the input story. Further, we observe that the emotions evoked by an event are often related: an event that evokes joy is unlikely to also evoke sadness. In this work, we explicitly model label classes via label embeddings, and add mechanisms that track label-label correlations both during training and inference. We also introduce a new semi-supervision strategy that regularizes for the correlations on unlabeled data. Our empirical evaluations show that modeling label semantics yields consistent benefits, and we advance the state-of-the-art on an emotion inference task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源