论文标题

通过可靠的变分自动编码来检测新颖性

Novelty Detection via Robust Variational Autoencoding

论文作者

Lai, Chieh-Hsin, Zou, Dongmian, Lerman, Gilad

论文摘要

我们提出了一种新的新方法来探测,可以容忍训练点的高腐败,而以前的作品则假定没有或非常低的腐败。我们的方法训练了强大的变异自动编码器(VAE),该自动编码器(VAE)旨在为未腐败的训练点生成模型。为了获得对高腐败的鲁棒性,我们通过以下四个更改进行了共同VAE的四个更改:1。通过精心设计的缩小尺寸的分布组件提取潜在代码的关键特征; 2。将潜在分布建模为高斯低级别嵌入式和全等级异常值的混合物,其中测试仅使用嵌入式模型; 3。应用Wasserstein-1度量标准进行正则化,而不是Kullback-Leibler(KL)差异; 4。使用可靠的错误进行重建。我们既对异常值建立鲁棒性,又建立了对Wasserstein指标低排名建模而不是KL Divergence的适用性。我们说明了标准基准的最新结果。

We propose a new method for novelty detection that can tolerate high corruption of the training points, whereas previous works assumed either no or very low corruption. Our method trains a robust variational autoencoder (VAE), which aims to generate a model for the uncorrupted training points. To gain robustness to high corruption, we incorporate the following four changes to the common VAE: 1. Extracting crucial features of the latent code by a carefully designed dimension reduction component for distributions; 2. Modeling the latent distribution as a mixture of Gaussian low-rank inliers and full-rank outliers, where the testing only uses the inlier model; 3. Applying the Wasserstein-1 metric for regularization, instead of the Kullback-Leibler (KL) divergence; and 4. Using a robust error for reconstruction. We establish both robustness to outliers and suitability to low-rank modeling of the Wasserstein metric as opposed to the KL divergence. We illustrate state-of-the-art results on standard benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源