论文标题
由动力蛋白和驱动蛋白的集体机制蜂拥而至
Aster Swarming by Collective Mechanics of Dyneins and Kinesins
论文作者
论文摘要
微管(MT)径向阵列或Aters通过与细胞器和分子电机相互作用来建立细胞的内部拓扑。我们开始使用多个MT ASTER的计算模型与细胞限制中的电动机相互作用的计算模型来理解Aster-Motor系统的一般模式。在此模型中,动力蛋白电动机附着在细胞皮层和类似于细胞内部的驱动蛋白-5扩散的加上电动机上。以MT长度波动形式引入“噪声”会自发地导致出现了紫色的协调性涡流样旋转。旋转的相干性和持久性需要皮质动力蛋白和耦合驱动蛋白的阈值密度,而旋转的开始,如果扩散限制与皮质动力蛋白迁移率有关。由于MT动态不稳定性的形式通过“噪声”,由于皮层电动机而导致的旋转分量的“拖船”的“拖船”旋转运动引起了协调的旋转运动,并且这种瞬时对称性破坏会通过机化蛋白-5复合物通过局部耦合而扩大。在细胞类型上缺乏广泛的氧化星旋转表明,抑制这种内在动力学的生物物理机制可能已经发展。该模型类似于局部耦合的自旋转颗粒(SPP)的更一般模型,该模型在存在的“噪声”存在下自发地进行集体运输,这些模型已被调用以解释鸟类和鱼类中的蜂群。然而,关于粒子密度和“噪声”依赖性,Aster-Motor系统与SPP模型不同,为新型的亚细胞模式形成系统提供了一组实验测试的预测。
Microtubule (MT) radial arrays or asters establish the internal topology of a cell by interacting with organelles and molecular motors. We proceed to understand the general pattern forming potential of aster-motor systems using a computational model of multiple MT asters interacting with motors in a cellular confinement. In this model dynein motors are attached to the cell cortex and plus-ended motors resembling kinesin-5 diffuse in the cell interior. The introduction of 'noise' in the form of MT length fluctuations spontaneously results in the emergence of coordinated, achiral vortex-like rotation of asters. The coherence and persistence of rotation requires a threshold density of both cortical dyneins and coupling kinesins, while the onset of rotation if diffusion-limited with relation to cortical dynein mobility. The coordinated rotational motion arises due to the resolution of the 'tug-of-war' of the rotational component due to cortical motors by 'noise' in the form of MT dynamic instability, and such transient symmetry breaking is amplified by local coupling by kinesin-5 complexes. The lack of widespread aster rotation across cell types suggests biophysical mechanisms that suppress such intrinsic dynamics may have evolved. This model is analogous to more general models of locally coupled self-propelled particles (SPP) that spontaneously undergo collective transport in presence of 'noise' that have been invoked to explain swarming in birds and fish. However, the aster-motor system is distinct from SPP models with regard to particle density and 'noise' dependence, providing a set of experimentally testable predictions for a novel sub-cellular pattern forming system.