论文标题

高维Heegaard浮子同源性的应用与拓扑联系

Applications of higher-dimensional Heegaard Floer homology to contact topology

论文作者

Colin, Vincent, Honda, Ko, Tian, Yin

论文摘要

本文的目的是建立高维Heegaard Floer同源性的一般框架,定义接触类别,并使用它来阻止liouville的接触歧管填充能力,并有足够的条件使Weinstein猜想持有。我们讨论了几类示例,包括分析象征性Khovanov同源性的近乎表弟的示例,以及横向链路不变的Plamenevskaya的类似物。

The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源