论文标题
随机分割网络:建模在空间相关的核心不确定性
Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty
论文作者
论文摘要
在图像分割中,给定输入通常有多个合理的解决方案。例如,在医学成像中,专家通常会在对象边界的确切位置不同意。估计这种固有的不确定性并预测多个合理的假设在许多应用中引起了极大的兴趣,但是在大多数当前的深度学习方法中缺乏这种能力。在本文中,我们介绍了随机分割网络(SSN),这是一种使用任何图像分割网络体系结构来建模进行不确定性的有效概率方法。与产生像素估计值的方法相反,SSNS模型在整个标签图上模型,因此可以为单个图像生成多个空间相干的假设。通过在logit空间上使用低级别的多元正态分布来建模给定图像的标签映射的概率,我们获得了空间一致的概率分布,该分布可以由神经网络有效地计算出,而没有对基础体系结构进行任何更改。我们测试了对现实世界医学数据分割的方法,包括3D多模式MRI扫描中2D CT中的肺结节和脑肿瘤。 SSN的表现优于建模的最先进,同时更简单,更灵活,更有效地相关的图像中的不确定性。
In image segmentation, there is often more than one plausible solution for a given input. In medical imaging, for example, experts will often disagree about the exact location of object boundaries. Estimating this inherent uncertainty and predicting multiple plausible hypotheses is of great interest in many applications, yet this ability is lacking in most current deep learning methods. In this paper, we introduce stochastic segmentation networks (SSNs), an efficient probabilistic method for modelling aleatoric uncertainty with any image segmentation network architecture. In contrast to approaches that produce pixel-wise estimates, SSNs model joint distributions over entire label maps and thus can generate multiple spatially coherent hypotheses for a single image. By using a low-rank multivariate normal distribution over the logit space to model the probability of the label map given the image, we obtain a spatially consistent probability distribution that can be efficiently computed by a neural network without any changes to the underlying architecture. We tested our method on the segmentation of real-world medical data, including lung nodules in 2D CT and brain tumours in 3D multimodal MRI scans. SSNs outperform state-of-the-art for modelling correlated uncertainty in ambiguous images while being much simpler, more flexible, and more efficient.