论文标题

分析学习算法的随机动态的一般框架

A General Framework for Analyzing Stochastic Dynamics in Learning Algorithms

论文作者

Chou, Chi-Ning, Sandhu, Juspreet Singh, Wang, Mien Brabeeba, Yu, Tiancheng

论文摘要

分析学习算法的挑战之一是客观值与随机噪声之间的循环纠缠。这也被称为“鸡肉和鸡蛋”现象,传统上,没有原则上解决这个问题的方法。人们通过利用动态的特殊结构来解决问题,因此很难概括分析。 在这项工作中,我们提出了一个简化的三步食谱,以解决“鸡肉和鸡蛋”问题,并为分析学习算法的随机动态提供了一个一般框架。我们的框架构成了概率理论的标准技术,例如停止时间和Martingale浓度。我们通过对三个截然不同的学习问题进行统一分析,并具有强大的统一高概率收敛保证,从而证明了框架的力量和灵活性。这些问题是强烈凸功能,流媒体组件分析的随机梯度下降,并具有随机梯度下降更新。我们要么在所有三个动态上都改进或匹配最新界限。

One of the challenges in analyzing learning algorithms is the circular entanglement between the objective value and the stochastic noise. This is also known as the "chicken and egg" phenomenon and traditionally, there is no principled way to tackle this issue. People solve the problem by utilizing the special structure of the dynamic, and hence the analysis would be difficult to generalize. In this work, we present a streamlined three-step recipe to tackle the "chicken and egg" problem and give a general framework for analyzing stochastic dynamics in learning algorithms. Our framework composes standard techniques from probability theory, such as stopping time and martingale concentration. We demonstrate the power and flexibility of our framework by giving a unifying analysis for three very different learning problems with the last iterate and the strong uniform high probability convergence guarantee. The problems are stochastic gradient descent for strongly convex functions, streaming principal component analysis, and linear bandit with stochastic gradient descent updates. We either improve or match the state-of-the-art bounds on all three dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源