论文标题

Metabelian群体:全等级演示,随机性和二芬太汀问题

Metabelian groups: full-rank presentations, randomness and Diophantine problems

论文作者

Garreta, Albert, Legarreta, Leire, Miasnikov, Alexei, Ovchinnikov, Denis

论文摘要

我们研究Metabelian组的Mathabelian $ g $ $ g $由全等级有限演示文稿$ \ langle a \ langle a \ mid rangle _ {\ Mathcal {m}} $我们证明,$ g $是$ \ max \ {0,| a | - | - | r | \} $和几乎是Abelian正常子组的产品的产物,如果$ | r | \ leq | a | -2 $,那么$ g $的二芬太丁问题是不确定的,而如果$ | r | r | \ geq | a | $可以决定。我们进一步证明,如果$ | r | \ leq | a | -1 $,然后在$ g $的任何直接分解中,但一个因素实际上是阿贝利安。由于有限的演示文稿几乎肯定地逐渐渐近,因此几乎可以肯定地毫无疑问地呈现上述所有特性。

We study metabelian groups $G$ given by full rank finite presentations $\langle A \mid R \rangle_{\mathcal{M}}$ in the variety $\mathcal{M}$ of metabelian groups. We prove that $G$ is a product of a free metabelian subgroup of rank $\max\{0, |A|-|R|\}$ and a virtually abelian normal subgroup, and that if $|R| \leq |A|-2$ then the Diophantine problem of $G$ is undecidable, while it is decidable if $|R|\geq |A|$. We further prove that if $|R| \leq |A|-1$ then in any direct decomposition of $G$ all, but one, factors are virtually abelian. Since finite presentations have full rank asymptotically almost surely, finitely presented metabelian groups satisfy all the aforementioned properties asymptotically almost surely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源