论文标题

$ \ MATHCAL {N} = 2 $ SUPERCON -CORMON -CORMONGAL TREMAIRE的平面限制

The planar limit of $\mathcal{N}=2$ superconformal quiver theories

论文作者

Fiol, Bartomeu, Martínez-Montoya, Jairo, Fukelman, Alan Rios

论文摘要

我们计算自由能的平面限制和四维$ {\ cal n} = 2 $ Super-Congrongulal Quiver Theories的$ 1/2 $ BPS Wilson Loop的期望值,并带有SU($ n $)S的产品($ n $)作为仪表集团和双向资源。超对称定位将问题降低为多矩阵模型,我们在零-instanton部门中重写是一种有效的动作,涉及由相关扩展的cartan矩阵确定的无限数量的双跟踪项。我们发现,与$ \ Mathcal {n} = 2 $ scfts的结果一样,可以用简单的量规组写入“树图上的总和”。对于$ \ wideHat {a_1} $ case,我们发现每棵树的贡献可以解释为在树上定义的广义ISING模型的分区函数;我们猜想这些在树上定义的模型的分区功能满足Lee-Yang特性,即它们的所有零位于单位圆上。

We compute the planar limit of both the free energy and the expectation value of the $1/2$ BPS Wilson loop for four dimensional ${\cal N}=2$ superconformal quiver theories, with a product of SU($N$)s as gauge group and bi-fundamental matter. Supersymmetric localization reduces the problem to a multi-matrix model, that we rewrite in the zero-instanton sector as an effective action involving an infinite number of double-trace terms, determined by the relevant extended Cartan matrix. We find that the results, as in the case of $\mathcal{N}=2$ SCFTs with a simple gauge group, can be written as sums over tree graphs. For the $\widehat{A_1}$ case, we find that the contribution of each tree can be interpreted as the partition function of a generalized Ising model defined on the tree; we conjecture that the partition functions of these models defined on trees satisfy the Lee-Yang property, i.e. all their zeros lie on the unit circle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源