论文标题

通过在线事件驱动的神经形态计算的电力系统干扰分类

Power System Disturbance Classification with Online Event-Driven Neuromorphic Computing

论文作者

Mahapatra, Kaveri, Lu, Sen, Sengupta, Abhronil, Chaudhuri, Nilanjan Ray

论文摘要

传输网络中的扰动事件的准确在线分类是广泛监测的重要组成部分。尽管许多常规的机器学习技术在对事件进行分类方面非常成功,但它们依赖于从控制中心中提取PMU数据的信息,并通过CPU/GPU处理它们,在能源消耗方面效率很低。为了解决这一挑战而不损害准确性,本文介绍了一种基于事件驱动的神经形态计算体系结构的新方法,用于分类功率系统干扰。提出了一个基于尖峰的神经网络(SNN)的计算框架,该框架利用了干扰中的稀疏性,并促进了本地事件驱动的操作,以无监督的学习和从传入数据中推断。首先提取PMU信号的时空信息并编码为尖峰火车,并通过基于SNN的监督和无监督的学习框架来实现分类。此外,提出了一种基于QR分解的选择技术,以识别参与多个干扰事件低等级子空间的信号。该方法的性能是根据从16机械,5个地区新英格兰 - 纽约系统收集的数据验证的。

Accurate online classification of disturbance events in a transmission network is an important part of wide-area monitoring. Although many conventional machine learning techniques are very successful in classifying events, they rely on extracting information from PMU data at control centers and processing them through CPU/GPUs, which are highly inefficient in terms of energy consumption. To solve this challenge without compromising accuracy, this paper presents a novel methodology based on event-driven neuromorphic computing architecture for classification of power system disturbances. A Spiking Neural Network (SNN)-based computing framework is proposed, which exploits sparsity in disturbances and promotes local event driven operation for unsupervised learning and inference from incoming data. Spatio-temporal information of PMU signals is first extracted and encoded into spike trains and classification is achieved with SNN-based supervised and unsupervised learning framework. Moreover, a QR decomposition-based selection technique is proposed to identify signals participating in the low rank subspace of multiple disturbance events. Performance of the proposed method is validated on data collected from a 16-machine, 5-area New England-New York system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源