论文标题
通过太空划分多路复用光纤技术,在更高维度的自我测试相互无偏的基础
Self-testing mutually unbiased bases in higher dimensions with space-division multiplexing optical fiber technology
论文作者
论文摘要
在独立于设备的量子信息方法中,给定任务的实现只能是从记录的统计信息中进行自我测试,而没有针对就业设备的详细模型。即使实验要求达到要求,它也为自然满足相关要求的高级量子技术提供了吸引人的验证方案。在这项工作中,我们通过实验研究是否可以采用自我测试协议来证明使用现代空间划分的多重光纤技术构建的新量子设备的正常功能。具体而言,我们考虑M.〜Farkas和J.〜Kaniewski的准备和测量方案(Phys。〜Rev。〜a 99,032316),用于对应于二维中相互无偏基碱基(MUB)的自测测量值$ d> 2 $。在我们的方案中,使用新的多核光纤和相关组件构建的多臂干涉仪实现了状态准备和测量阶段。由于这项技术实现了干涉仪的光学模式的高度重叠,因此我们能够实现自我测试的实施两个四维MUB的所需可见性。我们还量化了两个测量的操作量:(i)与贝尔违规的不相容性鲁棒性,以及(ii)可从结果中提取的随机性。由于MUB位于几个量子信息协议的核心,因此我们的结果对未来的量子作品具有实际感兴趣,这些量子依靠太空划分多路复用光纤。
In the device-independent quantum information approach, the implementation of a given task can be self-tested solely from the recorded statistics and without detailed models for the employed devices. Even though experimentally demanding, it provides appealing verification schemes for advanced quantum technologies that naturally fulfil the associated requirements. In this work, we experimentally study whether self-testing protocols can be adopted to certify the proper functioning of new quantum devices built with modern space-division multiplexing optical fiber technology. Specifically, we consider the prepare-and-measure protocol of M.~Farkas and J.~Kaniewski (Phys.~Rev.~A 99, 032316) for self-testing measurements corresponding to mutually unbiased bases (MUBs) in a dimension $d>2$. In our scheme, the state preparation and measurement stages are implemented with a multi-arm interferometer built with new multi-core optical fibers and related components. Due to the high-overlap of the interferometer's optical modes achieved with this technology, we are able to reach the required visibilities for self-testing the implementation of two four-dimensional MUBs. We also quantify two operational quantities of the measurements: (i) the incompatibility robustness, connected to Bell violations, and (ii) the randomness extractable from the outcomes. Since MUBs lie at the core of several quantum information protocols, our results are of practical interest for future quantum works relying on space-division multiplexing optical fibers.