论文标题

山脊回归的深度转移学习

Deep Transfer Learning with Ridge Regression

论文作者

Tang, Shuai, de Sa, Virginia R.

论文摘要

大量的在线数据和大量计算资源使工业和学术界的当前研究人员能够利用神经网络的深度学习力量。虽然经过大量数据训练的深层模型表明,从相关领域的看不见的数据表明了有希望的概括能力,但固定的计算成本逐渐成为将学习转移到新领域的瓶颈。我们通过利用内核脊回归(KRR)中提供的封闭形式解决方案来利用从深神经网络(DNN)产生的学习特征向量的低级别特性来解决这个问题。这种自由从填充训练中提出了学习,并用线性系统的合奏取代了较少的超参数。我们的方法在受监督和半监督的转移学习任务上取得了成功。

The large amount of online data and vast array of computing resources enable current researchers in both industry and academia to employ the power of deep learning with neural networks. While deep models trained with massive amounts of data demonstrate promising generalisation ability on unseen data from relevant domains, the computational cost of finetuning gradually becomes a bottleneck in transfering the learning to new domains. We address this issue by leveraging the low-rank property of learnt feature vectors produced from deep neural networks (DNNs) with the closed-form solution provided in kernel ridge regression (KRR). This frees transfer learning from finetuning and replaces it with an ensemble of linear systems with many fewer hyperparameters. Our method is successful on supervised and semi-supervised transfer learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源