论文标题
用于数据中心能量分析的强大建模框架
A robust modeling framework for energy analysis of data centers
论文作者
论文摘要
全球数字化已经诞生了大约当代生活领域的数字服务爆炸。人工智能,区块链技术和物联网的应用有望进一步加速数字化。结果,提供数据处理,存储和通信服务服务的数据中心的数量也正在迅速增加。由于数据中心是能源密集型的,而且电力需求不断增长,因此具有时间,空间和预测分析能力的数据中心的能源模型对于指导行业和政府当局以做出技术投资决策至关重要。但是,由于严重的数据差距,当前模型无法为数据中心提供一致且高的能量分析。这可以进一步归因于缺乏用于数据中心组件的能源分析的建模功能,包括IT设备和数据中心冷却和电源供电基础设施中的当前能源模型。在这项研究中,提出了一个基于技术的建模框架,该框架采用数据驱动的方法来解决当前数据中心能量模型中的知识差距。该研究旨在为政策制定者和数据中心能源分析师提供对数据中心的能源利用和效率机会的全面了解,并更好地了解宏观数据中心的能源需求和节能潜力,此外还有采用能源效率措施的技术障碍。
Global digitalization has given birth to the explosion of digital services in approximately every sector of contemporary life. Applications of artificial intelligence, blockchain technologies, and internet of things are promising to accelerate digitalization further. As a consequence, the number of data centers, which provide the services of data processing, storage, and communication services, is also increasing rapidly. Because data centers are energy-intensive with significant and growing electricity demand, an energy model of data centers with temporal, spatial, and predictive analysis capability is critical for guiding industry and governmental authorities for making technology investment decisions. However, current models fail to provide consistent and high dimensional energy analysis for data centers due to severe data gaps. This can be further attributed to the lack of the modeling capabilities for energy analysis of data center components including IT equipment and data center cooling and power provisioning infrastructure in current energy models. In this research, a technology-based modeling framework, in hybrid with a data-driven approach, is proposed to address the knowledge gaps in current data center energy models. The research aims to provide policy makers and data center energy analysts with comprehensive understanding of data center energy use and efficiency opportunities and a better understanding of macro-level data center energy demand and energy saving potentials, in addition to the technological barriers for adopting energy efficiency measures.