论文标题

探索强大图表中的算法公平性涵盖问题

Exploring Algorithmic Fairness in Robust Graph Covering Problems

论文作者

Rahmattalabi, Aida, Vayanos, Phebe, Fulginiti, Anthony, Rice, Eric, Wilder, Bryan, Yadav, Amulya, Tambe, Milind

论文摘要

在算法进步的推动下,AI算法越来越多地被部署在受到意外挑战的环境中,并具有复杂的社会影响。本文由现实部署AI驱动的,基于社会网络的自杀性预防和滑坡风险管理干预措施的动机,重点介绍了可靠的图表,涵盖了受群体公平限制的问题。我们表明,在没有公平性约束的情况下,可靠图覆盖问题的最先进算法会导致偏见的节点覆盖范围:它们倾向于根据传统边缘化群体的成员身份区分个体(节点)。为了减轻此问题,我们提出了一个新颖的图表,以涵盖了鲁棒的图形问题,该问题涵盖了群体公平限制和适用于现实世界实例的可拖动近似方案。我们在此问题上对团体公平(POF)的价格进行正式分析,在此我们表明不确定性会导致更大的POF。我们证明了我们的方法对几个现实世界社交网络的有效性。我们的方法产生竞争性节点覆盖范围,同时相对于最先进的方法可显着提高群体公平性。

Fueled by algorithmic advances, AI algorithms are increasingly being deployed in settings subject to unanticipated challenges with complex social effects. Motivated by real-world deployment of AI driven, social-network based suicide prevention and landslide risk management interventions, this paper focuses on robust graph covering problems subject to group fairness constraints. We show that, in the absence of fairness constraints, state-of-the-art algorithms for the robust graph covering problem result in biased node coverage: they tend to discriminate individuals (nodes) based on membership in traditionally marginalized groups. To mitigate this issue, we propose a novel formulation of the robust graph covering problem with group fairness constraints and a tractable approximation scheme applicable to real-world instances. We provide a formal analysis of the price of group fairness (PoF) for this problem, where we show that uncertainty can lead to greater PoF. We demonstrate the effectiveness of our approach on several real-world social networks. Our method yields competitive node coverage while significantly improving group fairness relative to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源