论文标题

$(1+1)$ - 尺寸随机几何波动方程的大偏差

Large Deviations for $(1+1)$-dimensional Stochastic Geometric Wave Equation

论文作者

Brzeźniak, Zdzisław, Goldys, Ben, Ondreját, Martin, Rana, Nimit

论文摘要

我们考虑了真实线上的随机波图方程,解决方案在$ d $二维紧凑型riemannian歧管中采用值。我们首先表明,该方程在局部Sobolev空间中具有独特的,全球,强大的解决方案。本文的主要结果证明了在消失噪声的情况下,解决方案的大偏差原理。

We consider stochastic wave map equation on real line with solutions taking values in a $d$-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源