论文标题
$(1+1)$ - 尺寸随机几何波动方程的大偏差
Large Deviations for $(1+1)$-dimensional Stochastic Geometric Wave Equation
论文作者
论文摘要
我们考虑了真实线上的随机波图方程,解决方案在$ d $二维紧凑型riemannian歧管中采用值。我们首先表明,该方程在局部Sobolev空间中具有独特的,全球,强大的解决方案。本文的主要结果证明了在消失噪声的情况下,解决方案的大偏差原理。
We consider stochastic wave map equation on real line with solutions taking values in a $d$-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.