论文标题
二项式边缘理想和规律性的界限
Binomial edge ideals and bounds for their regularity
论文作者
论文摘要
令$ g $为$ n $顶点上的简单图表,$ j_g $表示相应的二项式边缘理想的理想是$ s = k [x_1,\ ldots,x_n,y_1,y_1,\ ldots,y_n]。$我们证明,我们证明了castelnuovo-mumford of $ j_g $ j_g $ $ c $ c $ c $ c $ c $ c $ c(qybl)半块图。我们给出了Saeedi Madani-kiani规律性的另一个证明弦图的上限猜想。我们获得了Jahangir图的二项式边缘理想的规律性。稍后,我们建立了足够的条件,使Hibi-Matsuda猜想是正确的。
Let $G$ be a simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in $S = K[x_1, \ldots, x_n, y_1,\ldots, y_n].$ We prove that the Castelnuovo-Mumford regularity of $J_G$ is bounded above by $c(G)+1$ when $G$ is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani-Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi-Matsuda conjecture to be true.