论文标题
移动聚合物的缩放特性
Scaling Properties of a Moving Polymer
论文作者
论文摘要
我们为一个固有长度$ j $的移动,弱避免自避免的聚合物的SPDE模型,以$(0,\ infty)$为单位。我们的主要结果指出,聚合物的有效半径约为$ j^{5/3} $;显然,对于大$ j $,聚合物会进行伸展。这与没有时间变量的平衡情况形成鲜明对比,因此许多较早的结果表明,有效半径约为$ j $。 对于以$ \ mathbf {r}^2 $为单位的移动聚合物,我们提出一个猜想,有效半径约为$ j^{5/4} $。
We set up an SPDE model for a moving, weakly self-avoiding polymer with intrinsic length $J$ taking values in $(0,\infty)$. Our main result states that the effective radius of the polymer is approximately $J^{5/3}$; evidently for large $J$ the polymer undergoes stretching. This contrasts with the equilibrium situation without the time variable, where many earlier results show that the effective radius is approximately $J$. For such a moving polymer taking values in $\mathbf{R}^2$, we offer a conjecture that the effective radius is approximately $J^{5/4}$.