论文标题

车队:通过稳定意识和绩效预测的在线联邦学习

FLeet: Online Federated Learning via Staleness Awareness and Performance Prediction

论文作者

Damaskinos, Georgios, Guerraoui, Rachid, Kermarrec, Anne-Marie, Nitu, Vlad, Patra, Rhicheek, Taiani, Francois

论文摘要

联合学习(FL)对其隐私益处非常有吸引力:从本质上讲,全球模型经过在移动设备上计算的更新,同时保留用户本地数据的数据。但是,标准FL基础架构的设计无需对移动设备具有能源或性能的影响,因此不适合需要频繁(在线)模型更新(例如新闻推荐人)的应用程序。 本文介绍了Fleet,这是第一个在线FL系统,是Android OS和机器学习应用程序之间的中间件。 Fleet将标准FL的隐私与在线学习的精确度相结合,这要归功于两个核心组成部分:(i)I-Prof,这是一种新的轻质专业辅助器,可预测和控制学习任务对移动设备的影响,以及(ii)ADASGD,一种新的自适应学习算法,可依靠延迟更新。 我们广泛的评估表明,与标准FL相比,Fleet实施的在线FL可以提供2.3倍的质量提升,而仅消耗每天的0.036%的电池。 I-PROF可以通过提高预测准确性高达3.6倍(计算时间)和最高19倍(能量)来准确控制学习任务的影响。 ADASGD在异质数据上的收敛速度方面优于替代FL的方法。

Federated Learning (FL) is very appealing for its privacy benefits: essentially, a global model is trained with updates computed on mobile devices while keeping the data of users local. Standard FL infrastructures are however designed to have no energy or performance impact on mobile devices, and are therefore not suitable for applications that require frequent (online) model updates, such as news recommenders. This paper presents FLeet, the first Online FL system, acting as a middleware between the Android OS and the machine learning application. FLeet combines the privacy of Standard FL with the precision of online learning thanks to two core components: (i) I-Prof, a new lightweight profiler that predicts and controls the impact of learning tasks on mobile devices, and (ii) AdaSGD, a new adaptive learning algorithm that is resilient to delayed updates. Our extensive evaluation shows that Online FL, as implemented by FLeet, can deliver a 2.3x quality boost compared to Standard FL, while only consuming 0.036% of the battery per day. I-Prof can accurately control the impact of learning tasks by improving the prediction accuracy up to 3.6x (computation time) and up to 19x (energy). AdaSGD outperforms alternative FL approaches by 18.4% in terms of convergence speed on heterogeneous data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源