论文标题
光学干涉仪和GAIA测量不确定性揭示了渐近巨型分支星星的物理
Optical interferometry and Gaia measurement uncertainties reveal the physics of asymptotic giant branch stars
论文作者
论文摘要
语境。渐近巨型分支星星是凉爽的发光恒星,在银河系和居住的Gaia数据中都可以观察到。它们具有复杂的恒星表面动力学目的。在AGB Star CL LAC上,已显示与对流相关的变异性占GAIA DR2视差误差的很大一部分。我们在Chara干涉仪上安装了MIRC-X梁组合器观察到这条恒星,以检测出恒星表面不均匀性的存在。方法。我们从不同波长的干涉测量值中进行了孔径合成图像的重建。然后,我们使用CO5bold的恒星对流和后处理的辐射传输代码Optim3D使用3D辐射流体动力学模拟,以计算MIRC-X观测光谱通道中的强度图。然后,我们确定了恒星半径,并将3D合成图与重建的重建图进行了比较,该图的重建是匹配强度对比度,恒星表面结构的形态以及在两个不同光谱通道上的光中心位置,即1.52和1.70微米。结果。我们在两个波长下测量了Cl Lac的明显直径,并使用Gaia视差恢复了半径。除此之外,重建的图像的特征在于存在很大的较亮区域,该区域在很大程度上影响了光中心的位置。与3D模拟的比较在对比度和表面结构形态方面与观察结果良好一致,这意味着我们的模型足以解释观察到的不作响力。结论。这项工作证实了Gaia DR2的AGB星上与对流相关的表面结构的存在。我们的结果将帮助我们向前迈出一步,利用适当的RHD模拟来利用Gaia测量不确定性,以提取AGB恒星的基本特性。
Context. Asymptotic giant branch stars are cool luminous evolved stars that are well observable across the Galaxy and populating Gaia data. They have complex stellar surface dynamics Aims. On the AGB star CL Lac, it has been shown that the convection-related variability accounts for a substantial part of the Gaia DR2 parallax error. We observed this star with the MIRC-X beam combiner installed at the CHARA interferometer to detect the presence of stellar surface inhomogeneities. Methods. We performed the reconstruction of aperture synthesis images from the interferometric observations at different wavelengths. Then, we used 3D radiative hydrodynamics simulations of stellar convection with CO5BOLD and the post-processing radiative transfer code Optim3D to compute intensity maps in the spectral channels of MIRC-X observations. Then, we determined the stellar radius and compared the 3D synthetic maps to the reconstructed ones focusing on matching the intensity contrast, the morphology of stellar surface structures, and the photocentre position at two different spectral channels, 1.52 and 1.70 micron, simultaneously. Results. We measured the apparent diameter of CL Lac at two wavelengths and recovered the radius using a Gaia parallax. In addition to this, the reconstructed images are characterised by the presence of a brighter area that largely affects the position of the photocentre. The comparison with 3D simulation shows good agreement with the observations both in terms of contrast and surface structure morphology, meaning that our model is adequate for explaining the observed inhomogenities. Conclusions. This work confirms the presence of convection-related surface structures on an AGB star of Gaia DR2. Our result will help us to take a step forward in exploiting Gaia measurement uncertainties to extract the fundamental properties of AGB stars using appropriate RHD simulations.