论文标题
评估多种语言的多态定义生成模型
Evaluating a Multi-sense Definition Generation Model for Multiple Languages
论文作者
论文摘要
定义建模上的大多数先前的工作都没有考虑到多义,或者通过在给定上下文中考虑针对目标单词的定义建模来做到这一点。相比之下,在这项研究中,我们提出了一种基于多义单词嵌入的定义建模的上下文不合命令的方法,该方法能够为目标词生成多个定义。此外,与主要集中在英语的大多数先前工作形成鲜明对比的是,我们评估了我们在十五种不同的数据集上涵盖了来自几种语言家族的九种语言的方法。为了评估我们的方法,我们考虑了BLEU的几种变体。我们的结果表明,我们提出的多态模型在所有十五个数据集上的表现都优于单态模型。
Most prior work on definition modeling has not accounted for polysemy, or has done so by considering definition modeling for a target word in a given context. In contrast, in this study, we propose a context-agnostic approach to definition modeling, based on multi-sense word embeddings, that is capable of generating multiple definitions for a target word. In further, contrast to most prior work, which has primarily focused on English, we evaluate our proposed approach on fifteen different datasets covering nine languages from several language families. To evaluate our approach we consider several variations of BLEU. Our results demonstrate that our proposed multi-sense model outperforms a single-sense model on all fifteen datasets.