论文标题

$γ$ -ABC:基于强大的散度估计器的异常值近似贝叶斯计算

$γ$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a Robust Divergence Estimator

论文作者

Fujisawa, Masahiro, Teshima, Takeshi, Sato, Issei, Sugiyama, Masashi

论文摘要

近似贝叶斯计算(ABC)是在各种应用中采用的无似然推理方法。但是,如果不适当地选择了数据差异度量,ABC可能对离群值敏感。在本文中,我们建议将最近的基于邻居的$γ$ divergence估算器作为数据差异度量。我们表明,我们的估计器具有称为重新延期属性的合适理论鲁棒性。此外,我们的估计器具有各种理想的特性,例如高灵活性,渐近无偏见,几乎确定的收敛性和线性时间计算复杂性。通过实验,我们证明我们的方法比现有的差异措施实现了明显更高的鲁棒性。

Approximate Bayesian computation (ABC) is a likelihood-free inference method that has been employed in various applications. However, ABC can be sensitive to outliers if a data discrepancy measure is chosen inappropriately. In this paper, we propose to use a nearest-neighbor-based $γ$-divergence estimator as a data discrepancy measure. We show that our estimator possesses a suitable theoretical robustness property called the redescending property. In addition, our estimator enjoys various desirable properties such as high flexibility, asymptotic unbiasedness, almost sure convergence, and linear-time computational complexity. Through experiments, we demonstrate that our method achieves significantly higher robustness than existing discrepancy measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源