论文标题
傅立叶准晶体和温带分布的独特定理并具有离散支持
Uniqueness Theorems for Fourier Quasicrystals and Temperate Distributions with Discrete Support
论文作者
论文摘要
可以证明,如果两个傅立叶准晶体的支撑点的某些支撑点相互接近,而在这些点上的群众倾向于无穷大,那么这些准晶体是正确的。对于某种类别的离散温带分布也获得了类似的陈述。
It is proved that if some points of the supports of two Fourier quasicrystals approach each other while tending to infinity and the same is true for the masses at these points, then these quasicrystals coincide. A similar statement is obtained for a certain class of discrete temperate distributions.