论文标题
高维相似性搜索与量子辅助变异自动编码器
High-Dimensional Similarity Search with Quantum-Assisted Variational Autoencoder
论文作者
论文摘要
量子算法和硬件的最新进展表明,量子计算在不久的将来的潜在重要性。但是,找到合适的应用领域仍然是研究的活跃领域。量子机学习被吹捧为一种潜在的方法,以证明栅极模型和绝热方案中的量子优势。例如,已提出了量子辅助的变异自动编码器作为离散VAE的量子增强。我们扩展了先前的工作,并通过在大规模高维数据集中提供了概念概念来研究QVAE的实际适用性。虽然可用于低维数据集的精确和快速相似性搜索算法,但缩放到高维数据是非平凡的。我们展示了如何基于QVAE的潜在空间表示构建空间效率的搜索索引。我们的实验显示了嵌入式空间中的锤距距离与中等分辨率成像光谱仪(MODIS)数据集的原始空间中的欧几里得距离之间的相关性。此外,我们发现与线性搜索相比,我们发现了现实世界中的加速,并将记忆有效的缩放缩放到十亿个数据点。
Recent progress in quantum algorithms and hardware indicates the potential importance of quantum computing in the near future. However, finding suitable application areas remains an active area of research. Quantum machine learning is touted as a potential approach to demonstrate quantum advantage within both the gate-model and the adiabatic schemes. For instance, the Quantum-assisted Variational Autoencoder has been proposed as a quantum enhancement to the discrete VAE. We extend on previous work and study the real-world applicability of a QVAE by presenting a proof-of-concept for similarity search in large-scale high-dimensional datasets. While exact and fast similarity search algorithms are available for low dimensional datasets, scaling to high-dimensional data is non-trivial. We show how to construct a space-efficient search index based on the latent space representation of a QVAE. Our experiments show a correlation between the Hamming distance in the embedded space and the Euclidean distance in the original space on the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. Further, we find real-world speedups compared to linear search and demonstrate memory-efficient scaling to half a billion data points.