论文标题

通过动态图学习生成的3D部分组装

Generative 3D Part Assembly via Dynamic Graph Learning

论文作者

Huang, Jialei, Zhan, Guanqi, Fan, Qingnan, Mo, Kaichun, Shao, Lin, Chen, Baoquan, Guibas, Leonidas, Dong, Hao

论文摘要

在3D计算机视觉和机器人技术中,自主部分组装是一项具有挑战性但至关重要的任务。类似于购买宜家家具,鉴于一组可以组装单个形状的3D零件,智能代理需要感知3D零件几何形状,因此建议对输入零件提出姿势估算,最后将机器人计划和控制程序称为驱动。在本文中,我们关注视力侧的姿势估计子问题,涉及输入部分几何形状上的几何和关系推理。从本质上讲,生成3D部分组装的任务是预测一个6-DOF零件姿势,包括刚性旋转和翻译,对于组装单个3D形状作为最终输出的每个输入部分。为了解决这个问题,我们提出了一个面向装配的动态图学习框架,该框架利用迭代图神经网络作为骨干。它以粗略的方式显式地进行顺序零件组件的修补,利用一对零件关系推理模块和零件聚合模块,以动态调整两个部分特征及其在零件图中的关系。我们对三种强基线方法进行了广泛的实验和定量比较,证明了所提出的方法的有效性。

Autonomous part assembly is a challenging yet crucial task in 3D computer vision and robotics. Analogous to buying an IKEA furniture, given a set of 3D parts that can assemble a single shape, an intelligent agent needs to perceive the 3D part geometry, reason to propose pose estimations for the input parts, and finally call robotic planning and control routines for actuation. In this paper, we focus on the pose estimation subproblem from the vision side involving geometric and relational reasoning over the input part geometry. Essentially, the task of generative 3D part assembly is to predict a 6-DoF part pose, including a rigid rotation and translation, for each input part that assembles a single 3D shape as the final output. To tackle this problem, we propose an assembly-oriented dynamic graph learning framework that leverages an iterative graph neural network as a backbone. It explicitly conducts sequential part assembly refinements in a coarse-to-fine manner, exploits a pair of part relation reasoning module and part aggregation module for dynamically adjusting both part features and their relations in the part graph. We conduct extensive experiments and quantitative comparisons to three strong baseline methods, demonstrating the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源